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Dopamine signaling occurs on a subsecond timescale, and its dysre-
gulation is implicated in pathologies ranging from drug addiction to
Parkinson’s disease. Anatomic evidence suggests that some dopa-
mine neurons have cross-hemispheric projections, but the significance
of these projections is unknown. Here we report unprecedented in-
terhemispheric communication in the midbrain dopamine system of
awake and anesthetized rats. In the anesthetized rats, optogenetic
and electrical stimulation of dopamine cells elicited physiologically
relevant dopamine release in the contralateral striatum. Contralateral
release differed between the dorsal and ventral striatum owing to
differential regulation by D2-like receptors. In the freely moving an-
imals, simultaneous bilateral measurements revealed that dopamine
release synchronizes between hemispheres and intact, contralateral
projections can release dopamine in the midbrain of 6-hydroxydop-
amine–lesioned rats. These experiments are the first, to our knowl-
edge, to show cross-hemispheric synchronicity in dopamine signaling
and support a functional role for contralateral projections. In addi-
tion, our data reveal that psychostimulants, such as amphetamine,
promote the coupling of dopamine transients between hemispheres.
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Dopamine neurotransmission modulates arousal and motiva-
tion, and is important to the expression of reward-seeking

behavior. Dopamine is released on a subsecond timescale during
unexpected reward (1, 2), and becomes time-locked to cues that
predict reward (3–7). Dopamine transients in the nucleus accum-
bens (NAc) occur as a result of cell firing in the ventral tegmental
area (VTA) (8, 9), and in rats reach concentrations of 50–200 nM
before returning to baseline (10, 11). Striatal dopamine transients
also occur spontaneously during periods of rest (10, 11), reflecting
endogenous dopamine modulation. The magnitude and frequency
of dopamine transients increase in response to drugs of abuse (12,
13), which is thought to contribute to their reinforcing properties
(14). Although numerous studies have summarized the function of
dopamine circuits in reward-based behaviors (15, 16) and motor
control (17–19), anatomic descriptions of dopamine projections are
conflicting (20–23). Recent evidence suggests that some dopamine
neurons project contralateral to their origin (22, 23), contradictory
to the uncrossed dopamine system described previously (20, 21).
To date, the significance of contralaterally projecting dopamine
neurons, and how they may contribute to cross-hemispheric sig-
naling, have not been established.
A potential role for contralateral dopamine projections emerged

in a recent study on brain stimulation reward (24). When rats were
trained to self-stimulate the VTA, infusion of dopamine receptor
antagonists in the NAc suppressed stimulation. This effect was seen
whether the infusion was contralateral or ipsilateral to the stimu-
lation site, reflecting cross-hemispheric modulation of the behavior.
Furthermore, c-Fos, a marker of neural activity, was elevated in
both hemispheres after unilateral stimulation. Because the study
did not examine dopamine release from VTA stimulation,
the functional influence of contralateral projections could not
be confirmed.

Contralateral projections also may play a role in the neural
adaptations in Parkinson’s disease, which is characterized by a loss
of midbrain dopamine. A hemiparkinsonian state can be modeled
with unilateral 6-hydroxydopamine (6-OHDA) lesions, and recent
studies have described alterations in synaptic signaling following
dopamine depletion (25–29). If contralateral dopamine projections
have functional significance, then dopamine arising from these in-
tact projections may influence signaling in the lesioned hemisphere
(30). Understanding the influence of contralateral projections may
afford new approaches to implementing such therapies as deep
brain stimulation for Parkinson’s disease.
In this study, we demonstrate that contralaterally projecting

dopamine neurons are functional and influence cross-hemispheric
striatal signaling. We measured spontaneous and stimulated do-
pamine release in rats with fast-scan cyclic voltammetry (FSCV).
In freely moving rats, we found spontaneous synchronous dopa-
mine release in both hemispheres that further synchronized fol-
lowing amphetamine administration. We show that electrical or
optogenetic stimulation of dopamine neurons elicits physiologi-
cally relevant dopamine release in the contralateral NAc and
dorsomedial striatum (DMS). Using pharmacology, we show that
dopamine projections are differentially regulated by D2 receptors.

Significance

Decades of research have described dopamine’s importance in
reward-seeking behavior and motor control. Although numer-
ous investigations have focused on dopamine’s mechanisms in
modulating behavior, the long-standing belief that dopamine
neurons project solely unilaterally has limited the exploration of
interhemispheric dopamine signaling. Here we resolve disparate
descriptions of unilateral vs. bilateral projections by reporting
that dopamine neurons can release dopamine in the contralat-
eral hemisphere. Using voltammetry in awake and anesthetized
rats, we reveal an unprecedented synchrony of dopamine fluc-
tuations between hemispheres. Via stimulation with amphet-
amine, we demonstrate functional cross-hemispheric projections
in a hemiparkinsonian model. This previously undescribed ca-
pacity for interhemispheric dopamine signaling can precipitate
new areas of inquiry. Future work may exploit properties of
bilateral dopamine release to improve treatments for Parkin-
son’s disease, including deep brain stimulation.
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We also extend these findings into 6-OHDA–lesioned animals and
characterize functional adaptations following unilateral depletion.

Results
Spontaneous Dopamine Transients Synchronize in the NAc. FSCV
has been used to measure dopamine fluctuations in a number of
studies; however, to date, all awake-animal measurements have
been restricted to a single hemisphere (1–13, 31–35). To investigate
connectivity between hemispheres, we measured dopamine tran-
sients bilaterally in the NAc of freely moving rats. We recorded
from dual carbon fiber electrodes, as used previously in anes-
thetized animals (36). We targeted guide cannulas over the NAc
(Fig. 1A) and optimized recording locations for spontaneous do-
pamine release (Fig. 1 C and D). We found dopamine transients
of similar magnitudes (left, 92.1 ± 5.23 nM; right, 96.4 ± 5.92 nM;
Fig. 1E) and frequency (left, 8.5 ± 1.6 transients min−1; right, 7.7 ±
0.6 transients min−1; Fig. 1F) in both hemispheres. Interestingly,
74 ± 5.3% of dopamine transients occurred simultaneously be-
tween hemispheres in animals at rest (Fig. 1G). We next admin-
istered d-amphetamine (AMPH; 2.5 mg/kg i.p.), and found that

transient magnitude increased in both hemispheres (left, 157.2 ±
30.6 nM; right, 184.3 ± 39.2 nM, two-way repeated-measures
ANOVA; effect of AMPH, F(1,4) = 11.3, P < 0.05) (Fig. 1E). Fol-
lowing AMPH administration, all dopamine transients synchronized
and increased in frequency (15.9 ± 2.0 transients min−1, two-way
repeated-measures ANOVA; effect of AMPH, F(1,4)=13.7, P < 0.05)
(Fig. 1 F andG). With animals anesthetized and the VTA stimulated
unilaterally, we measured dopamine at both electrodes (Fig. 1B).

Stimulation of Dopamine Neurons Elicits Release in the Contralateral
Hemisphere.Given that electrical stimulation of the VTA resulted
in dopamine in both hemispheres, we characterized contralaterally
evoked release to ascertain whether it was restricted to the NAc,
and whether it contributed to coupled dopamine transients. We
implanted a carbon fiber electrode into either the NAc or DMS
(Fig. 2 A and D) of anesthetized rats and lowered it ventrally
through the striatum with the stimulating electrode in the con-
tralateral VTA [8.8 mm dorsoventral (DV)] or substantia nigra
(SN; 7.6 mm DV). We found multiple locations that supported
release (Fig. 2 B and E). In the NAc, contralateral dopamine re-
lease peaked (DAcon/DAcon-max) in the core (6.4 mm DV) and in
the shell (7.4 mm DV; Fig. 2C). In the DMS, maximal dopamine
release elicited by contralateral SN stimulation was restricted to a
smaller range (6.2–6.4 mm DV; Fig. 2F).
We examined interhemispheric differences using within-animal

comparisons of dopamine evoked contralateral vs. ipsilateral to
the stimulation site (Fig. 3 A and C). With the recording electrode
at a constant depth (NAc, 7.4 mm DV; DMS, 6.2 mm DV),
maximal release was achieved by stimulating similar VTA or SN
depths in both hemispheres. Of note, in the NAc, ipsilateral
stimulation elicited ∼20-fold more dopamine release than contra-
lateral stimulation (8.8 mm DV; Fig. 3A). In contrast, ipsilateral and
contralateral SN stimulations evoked dopamine release of equal
magnitude in the DMS (7.6 mm DV; Fig. 3C). We obtained similar
release in the DMS by stimulating the contralateral and ipsilateral
peduncolopontine tegmental nucleus (PPTg), an excitatory input to
the SN (Fig. S1). Recording in the dorsolateral striatum revealed that
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Fig. 1. Spontaneous dopamine transients synchronize bilaterally in the NAc.
(A) Schematic of electrode implantation for simultaneous dopamine transient
measurements. (B) Representative dopamine release in the right and left NAc
following stimulation (red bar) of the right VTA, with voltammograms.
(C ) Representative color plots demonstrating synchronous dopamine
transients in both hemispheres with applied potential on the ordinate,
recording time on the abscissa, and current encoded in false color. (D) Changes
in dopamine concentration (asterisks) in both hemispheres extracted
using principal component analysis from the color plots in C. Gray lines
indicate synchronized transients; asterisks alone indicate asynchronous
dopamine release. (E ) Average ± SEM dopamine transient concentration
in the left (L) and right (R) NAc after administration of saline vehicle
(VEH; green) and 2.5 mg/kg amphetamine (AMPH; yellow). (F ) Average ±
SEM number of dopamine transients min−1 in the left and right NAc
after VEH and AMPH administration. (G) Within-animal comparison of
percent transient synchrony after VEH and AMPH administration. n = 3
animals.
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Fig. 2. Stimulation of dopamine neurons produces localized release in the
contralateral striatum. (A and D) Electrode trajectories superimposed on co-
ronal sections. (B and E) Dopamine release at the terminals was dependent on
recording electrode depth; example traces are shown. Cyclic voltammograms
recorded at maximum release are shown as well. (C and F) Dopamine response
(DAcon) following electrical stimulation of the contralateral VTA (C) or SN (F),
normalized to maximum dopamine release (DAcon-max) as a function of
working electrode depth. n = 10 animals per group. Data are average ± SEM.
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this equal release was unique to the DMS (Fig. S2). In addition,
contralateral release was not due to electrical spread to the ipsilateral
hemisphere, given that lidocaine infusions in the ipsilateral SN/VTA
did not affect the release evoked by contralateral stimulation (Fig. S3).
We confirmed the origin of contralateral release using optogenetics

to activate only dopaminergic neurons. We drove channelrhodopsin-2
(ChR2) expression in dopamine neurons using a tyrosine hydroxylase
(TH) promoter (37, 38). Light stimulation of the VTA elicited do-
pamine release in the contralateral NAc roughly equivalent to elec-
trical stimulation (Fig. 3B). A similar release was seen in the DMS
following stimulations of the contralateral SN (Fig. 3D). We found
ChR2 expression in the contralateral DMS in the absence of viral
spread between hemispheres in the SN (Figs. S4 and S5) and VTA
(Fig. S6).

Contralateral Dopamine Release Is Differentially Regulated. To in-
vestigate the differences in dopamine release from contralateral and
ipsilateral projections, we administered D2 antagonist raclopride
(RAC; 2 mg/kg i.p.) and dopamine transporter inhibitor GBR-
12909 (GBR; 15 mg/kg i.p.) and measured their effects on evoked
dopamine. There were no differences in D2-like regulation between
the contralateral and ipsilateral projections to the DMS (Fig. 4A).
In contrast, D2 autoreceptors in the NAc exerted more control over
dopamine release from contralateral compared with ipsilateral
projections, evidenced by a much greater RAC response on the
contralateral side (525 ± 135.3% vs. 204 ± 26.5%, respectively; n =
7; F(3,22) = 4.9, P < 0.05) (Fig. 4B). Thus, enhanced regulation by
D2 might account for the discrepancy in dopamine concentrations
evoked in the ipsilateral and contralateral NAc. We also found
an increased response to GBR in the DMS following contralateral
SN stimulation relative to ipsilateral stimulation (1260 ± 301% vs.
694± 199%, respectively; n = 7; F(3,26) = 5.7, P < 0.05), but not in the
NAc (Fig. 4 A and B). To exclude the effects of supraphysiological
stimulation frequency on dopamine release, we delivered 10-Hz
stimulations to the contralateral VTA and SN, resulting in small, yet
physiologically relevant concentrations (Fig. S7).

Contralateral Release Is Not Solely Compensatory. Parkinson’s dis-
ease is often modeled with unilateral 6-OHDA lesions. Although
small dopamine concentrations remain in lesioned animals (39),

the extent to which contralateral projections compensate for
depletion is unknown. Given that the DMS exhibited hemi-
spherically equivalent release, we chose it as a site for monitoring
changes in contralateral dopamine release after depletion. We
used unilateral 6-OHDA lesions of the SN and recorded dopa-
mine release in the lesioned hemisphere. At 2 wk after treat-
ment, we validated the lesions by measuring ipsilaterally biased
rotations after administration of 2.5 mg/kg AMPH (effect of
6-OHDA treatment, F(1,12) = 38.32; effect of AMPH adminis-
tration, F(1,12) = 49.55, P < 0.001, two-way repeated-measures
ANOVA) (Fig. 5B; TH immunoreactivity in Fig. S8). After 3 d,
animals were anesthetized, and dopamine was measured in the
DMS ipsilateral to the lesion. Stimulations were delivered to
ipsilateral (lesioned) and contralateral SN (Fig. 5 A and C).
Ipsilateral dopamine efflux was ablated following lesioned SN
stimulation relative to controls (0.03 ± 0.007 μM vs. 0.15 ±
0.024 μM; n = 7; F(3,24) = 8.3, P < 0.001) (Fig. 5D). Stimulation
of the contralateral/untreated SN resulted in dopamine release
in the same recording location (Fig. 5D). Surprisingly, the le-
sioned and control animals showed no differences in dopamine
release following contralateral SN stimulation, suggesting that
contralateral projections in 6-OHDA–treated rats do not com-
pensate via increased release (0.10 ± 0.01 μM vs. 0.12 ± 0.02 μM;
n = 7; P > 0.05) (Fig. 5D).
Dopamine denervation drives homeostatic changes in striatal

signaling (40), such as increased D2 expression in indirect pathway
neurons (29). To test for D2-like adaptations in intact contralat-
eral projections after unilateral dopamine depletion, we measured
the effect of D2 antagonist RAC (2 mg/kg i.p.) on release in the
lesioned DMS. RAC produced a larger increase in contralaterally
evoked dopamine in lesioned animals compared with control an-
imals (674 ± 98.3% vs. 401 ± 79.9%; n = 7; t(13)=2.2, P < 0.05),
confirming adaptation after dopamine depletion.
Finally, we measured spontaneous dopamine efflux in awake

animals at 2 wk after unilateral 6-OHDA treatment. We found
spontaneous dopamine transients in the DMS of sham-lesioned
animals that increased following AMPH administration (Fig.
5E), in agreement with previous studies (31). In the 6-OHDA–
lesioned animals, spontaneous dopamine transients in the DMS
ipsilateral to the SN lesion were not present under vehicle ad-
ministration, but were elicited by AMPH administration (Fig.
5F). Thus, AMPH-induced dopamine release appears to arise
from intact contralateral projections in unilaterally lesioned
animals.

Discussion
Our findings reveal previously undescribed interhemispheric com-
munication in the mesencephalic dopamine system of rats. First,
we found that optogenetic and electrical stimulation of dopamine
cells elicited physiologically relevant release in the contralateral
striatum. Compared with ipsilateral projections, contralateral
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projections from the VTA released less dopamine in the NAc
and were more tightly controlled by D2 autoreceptors. In con-
trast, dopamine release in the DMS was equivalent following
contralateral or ipsilateral SN stimulation and accompanied
similar D2 control in both hemispheres. Second, we found that
∼75% of spontaneous NAc dopamine transients synchronized
between hemispheres in freely moving rats, which increased to
100% following AMPH administration. Finally, we showed
that contralateral projections from SN neurons were functional
in the hemiparkinsonian state, but did not compensate by in-
creased dopamine release. Instead, D2 control on contralateral
projections was increased after unilateral 6-OHDA treatment.
Contralateral SN projections can be stimulated with amphet-
amine to evoke dopamine transients in the lesioned striatum of
awake animals. These results establish for the first time, to
our knowledge, that transient dopamine concentrations are
synchronous between hemispheres, and that the dopamine
system has functional contralateral projections, with impli-
cations for interhemispheric adaptations in Parkinson’s dis-
ease. Furthermore, our data indicate that psychostimulants,
such as AMPH, play a role in coupling dopamine transients
between hemispheres.
Anatomic studies have described ∼5% of midbrain dopamine

neurons as projecting contralaterally to their origin (22, 23). In
agreement with this, we found lower dopamine concentrations in
the NAc after contralateral VTA stimulation compared with
after ipsilateral VTA stimulation (Fig. 3A). Interestingly, dopa-
mine release from contralateral VTA neurons was more regu-
lated by D2 autoreceptors. Dopamine released from ipsilateral
projections may occupy D2 receptors on terminals from the
contralateral hemisphere, attenuating release from contralateral
VTA. Under intense stimulation, or with disruption of regula-
tion mechanisms, dopamine can be released from these fibers.
Consistent with this idea, dopamine receptor antagonism in the
contralateral NAc has been found to suppress intra-VTA self-
stimulation in the ipsilateral hemisphere (24), corroborating cross-
hemispheric functionality and providing behavioral significance.
Surprisingly, when we placed our recording electrode in the

DMS and stimulated contralateral or ipsilateral SN, we found
similar release amplitudes regardless of the stimulated hemi-
sphere (Fig. 3C). This property was unique to the DMS, as the
evoked dopamine ratio in the dorsolateral striatum was more

similar to that in the NAc (Fig. S2). Similar D2 regulation in
both hemispheres accompanied hemispherically equivalent re-
lease in the contralateral DMS, in contrast to D2 regulation of
contralateral/ipsilateral VTA projections. Based on the confir-
mation of our findings using optogenetics, contralateral dopamine
release is driven by dopamine neurons; however, optical activation
does not preclude the effects of glutamate corelease (41), which
may facilitate hemispherically equivalent release.
Dopamine transients are increased following administration of

drugs of abuse (12), and this appears to mediate their reinforcing
properties (14). Dopamine transients have been studied exten-
sively (1–13, 31–35); however, previous measurements were re-
stricted to a single hemisphere, including those using a magnetic
resonance imaging-compatible dopamine reporter (42), and few
microdialysis experiments performed bilateral measurements
(43). In the present work, we measured spontaneous dopamine
efflux with millisecond time resolution in both hemispheres simul-
taneously and found synchronicity in release. In agreement with
previous reports (11), synchronized dopamine concentrations
exhibited variability on a subminute timescale (Fig. 1D), but on
average, transient concentrations over 30 min were comparable
between the hemispheres (Fig. 1E). The apparent bilateral syn-
chrony in NAc dopamine release shows that although transients are
heterogeneous within subregions (11), their occurrence is coupled
between the hemispheres.
Interestingly, after AMPH administration, all dopamine efflux

became synchronized between the hemispheres. Because NAc
dopamine transients originate from VTA cell firing (8, 9), and
amphetamine-induced dopamine release occurs in an action
potential-dependent manner (44), coupled dopamine transients
reflect synchronicity within the VTA that could arise from several
mechanisms. During psychostimulant-induced excitation, VTA
cells display slow, rhythmic oscillations (45). These oscillations
allow neurons to become more sensitive to the precise timing of
synaptic inputs and aid in synchronizing patterns of neuronal ac-
tivity (46). Thus, amphetamine may synchronize firing in the VTA
between hemispheres, or synchronize contralaterally and ipsilat-
erally projecting neurons within a hemisphere. Synchronicity in
dopamine transients may result from neurotensin release in the
VTA. Intra-VTA neurotensin activates dopamine neurons and
contributes to behavioral sensitization after administration of
psychostimulants (47). The parabrachial nucleus is one source of
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neurotensinergic projections to the VTA (48) and projects bi-
laterally to midbrain dopamine neurons (49).
Regardless of the mechanism, the synchronicity in dopamine

release between hemispheres uncovered here establishes that
chemical signaling, like physiological activity (50), is tightly cou-
pled across the brain. Given that amphetamine-induced dopamine
transients remained in the unilaterally lesioned animals, it is ap-
parent that interhemispherical connectivity contributes to psy-
chostimulant-induced dopamine fluctuations. Dopamine transients,
which have been shown to be important in drug abuse (14), clearly
arise from bilateral interactions. Furthermore, amphetamines are
used to treat attention deficit hyperactivity disorder (ADHD), and
patients with ADHD have abnormal frontostriatal asymmetry (51).
The observed synchronicity in dopamine signaling after amphet-
amine administration may contribute to its therapeutic effects in
individuals with ADHD. Although further research is needed to
establish the mechanisms that coordinate dopamine transient
coupling, the present study establishes that dopamine fluctuations
display synchrony between hemispheres.
Contralateral projections may balance dopamine concentra-

tions between hemispheres after dopamine depletion. However,
when the SN was 6-OHDA lesioned, we found dopamine release
from the contralateral, unlesioned SN was equivalent in lesioned
and control animals. This finding was surprising, because these
projections are thought to compensate for depletion via increased
release (30). Instead, we found enhanced D2 control over release
in the lesioned hemisphere, supporting the previous finding of
increased D2 expression after dopamine depletion (29).
When we extended our measurements to awake animals, we

found spontaneous transients in the DMS of sham-lesioned animals
that were not present in the 6-OHDA–lesioned animals. Dopamine
transients were elicited in the lesioned hemisphere with AMPH,
however. Considering that D2 receptors exerted more control over
contralateral dopamine release in lesioned animals, and that am-
phetamine attenuates D2 function (52), we believe that this release
arose from the intact contralateral projections. With the perturba-
tion introduced by amphetamine, contralateral projections may
release dopamine into the depleted hemisphere. Indeed, dopamine
cell firing between hemispheres has been seen to normalize after
the activation of dopamine receptors in 6-OHDA–lesioned animals
(53). Previous work in primates (54) and rats (55) has alluded to
interhemispheric adaptations following nigrostriatal damage. The
data presented here establish a functional role for interhemispheric
dopamine projections after unilateral 6-OHDA treatment.
In summary, this work demonstrates the functional significance

of interhemispheric communication in dopaminergic signaling.
Activation of midbrain dopamine neurons evokes physiologically
relevant dopamine release in the contralateral striatum of rats that
synchronizes between the hemispheres. D2 autoreceptors from
contralateral VTA projections exert more control over NAc do-
pamine release relative to the ipsilateral projections, in contrast to
DMS release via SN stimulation. Selective activation confirmed
that dopaminergic neurons drive contralateral release. Further-
more, we found that contralateral release was not solely compen-
satory, because similar amounts of dopamine were evoked after
contralateral SN stimulation in 6-OHDA–treated and control rats.
These data are the first to demonstrate the functional nature of
cross-hemispheric dopamine projections, and provide a new con-
text for the plasticity of striatal synapses after unilateral manipu-
lation. Crossing projections likely facilitate the observed coupling
of dopamine transients. Moreover, our findings provide additional
insight into recently reported receptor alterations (25–29), showing
that the lesioned hemisphere is not completely dopamine-deprived.
Low concentrations released from contralateral projections, such
as those reported here after AMPH administration, likely influence
receptor sensitivity in the lesioned hemisphere, and should be
accounted for in future studies. The previously unappreciated
cross-hemispheric functionality revealed here also may be useful in
devising new therapies for dysregulated dopamine signaling.

Methods
Additional details are provided in SI Methods.

Animal Care.All experimentswereperformed inaccordancewithguidelinesof the
Institutional Animal Care and Use Committees at the University of North Carolina
at Chapel Hill andWake Forest University. Sprague–Dawley rats (males, 270–400 g;
Charles River Laboratories) were given food and water ad libitum and pair-
housed in University of North Carolina or Wake Forest University animal facilities
under a 12-h:12-h light:dark cycle. All experiments were performed during the
12-h light period. To reduce the number of animals and minimize their suffering,
we limited the awake measurements to three per treatment group, sufficient to
demonstrate the effect in each animal. For anesthetized experiments, we selected
5–10 animals, typical of voltammetric studies. In total, 3 animals were used for
bilateral transient measurements, 20 were used for 6-OHDA studies, 53 were used
for mapping/pharmacology, and 10 were used for optogenetic experiments.

Spontaneous Dopamine Measurements. Rats underwent stereotaxic surgery
under isofluorane anesthesia. In brief, two guide cannulas (BASi) were implanted
bilaterally in the NAc [anteroposterior (AP), +1.3; mediolateral (ML), ± 2.1 mm,
±10° to the perpendicular], a bipolar stimulating electrode (Plastics One) in the
right VTA (AP, −5.2; ML, +1.0; DV, 8.5 mm), and a third cannula in the left
hemisphere for an Ag/AgCl reference. After 3 d of recovery, carbon fiber micro-
electrodes were lowered bilaterally into the NAc of the awake animals through
microdrives. Voltammetric measurements of dopamine transients were per-
formed as described previously (7, 38) using High-Definition Cyclic Voltammetry
software. A triangular scan (−0.4 to +1.3V, 400 V/s) was applied to the working
electrode every 100 ms to detect changes in dopamine concentration. Sponta-
neous dopamine efflux was measured for 30 min after administration of vehicle
(VEH) (saline, 1 mL/kg i.p.), and 30 min after administration of AMPH (2.5 mg/kg
i.p.; Sigma-Aldrich). Animals were then anesthetized (urethane, 1.5 g/kg), after
which VTA stimulation was delivered to construct voltammograms for principal
component analysis using an in vitro calibration factor (10 nA/μM) (56). Only
transients exceeding three times the SD of the noise in dopamine traces obtained
by principal component regression were considered spontaneous dopamine.

6-OHDA Lesions. Here 3 μL of 10 mM 6-OHDA HBr/0.01% wt/vol ascorbic acid
(Sigma-Aldrich) in saline (0.9%) or saline (sham) was infused into the right SN (AP,
−5.8 mm; ML, +2.0 mm; DV, −7.8 mm) through a cannulated stimulating elec-
trode (Plastics One) at 1 μL/min. After being allowed to recover from the 6-OHDA
lesions for 2 wk, rats were placed in a clear plastic bowl (30 cm diameter, 20 cm
high) and videotaped for spontaneous rotational behavior after administration
of 2.5 mg/kg AMPH. At 3 d after scoring of rotations, rats were anesthetized
(urethane, 1.5 g/kg), and a second stimulating electrode was placed in the left SN
(AP, −5.8; ML, −2.0; DV, −7.8 mm). A carbon fiber electrode was lowered into the
right DMS (AP, +1.2; ML, +2.0; DV, −4.0 to −6.2 mm) in 200-μm intervals. An
Ag/AgCl reference electrode was placed contralateral to the working electrode.
Dopamine release was evoked using 1-s, 300-μA stimulation pulses applied at 60
Hz using two constant current isolators (NL800; NeuroLog) and compared be-
tween hemispheres. In a subset of freely moving animals, a carbon fiber electrode
was lowered into the DMS (DV, 6.0 mm). Spontaneous dopamine transients were
recorded after VEH (1 mL/kg saline) and AMPH (2.5 mg/kg) administration. Ani-
mals were then anesthetized (urethane, 1.5 mg/kg), and electrical stimulation
was delivered to treated and contralateral SNs to confirm lesion efficacy.

Mapping of Contralateral Dopamine Release. Naive rats were anesthetized
with urethane, and holes were drilled for recording electrodes in the NAc or
DMS (NAc: AP, +1.3 mm; ML, +1.3 mm; DMS: as above) and a stimulating
electrode in the VTA or SN (VTA: AP, −5.2; ML, ±1.0 mm; SN: AP, −5.8 mm;
ML, ±2.0 mm). The stimulating electrode was held at a constant depth con-
tralateral to the carbon fiber electrode (VTA: −8.4 mm DV, SN: −7.8 mm DV)
while the carbon fiber electrode was lowered in 200-μm increments. Then
300-μA electrical stimulation (60 Hz, 1 s) was applied with NeuroLogs (NL800).
Once maximal dopamine release was attained at the working electrode, the
stimulating electrode was adjusted ventrally in 200-μm intervals to map the
effect of stimulation location on release. The stimulating electrode was re-
moved from the contralateral hemisphere and lowered ventrally through the
ipsilateral hemisphere. In a subset of animals (five DMS, five NAc), 10-Hz
stimulations were delivered to the contralateral SN/VTA. We also examined
dopamine release in the dorsolateral striatum (AP, +0.5 mm; ML, +3.5 mm;
n = 5), and as evoked by PPTg stimulation (AP, −7.8; ML, ±2.0 mm; n = 5).

Pharmacology. Baseline release was recorded for 20 min by repeating the 1-s
electrical stimulation every 2 min. Release was monitored for 30 min after D2
receptor antagonism [s-(−)-RAC HCl, 2 mg/kg i.p.; Sigma-Aldrich], and for
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30 min after subsequent dopamine transporter inhibition (GBR-12909,
15 mg/kg i.p.; Sigma-Aldrich).

Statistics. Statistical analyses were performed using GraphPad Prism, and
no data were removed. One-way ANOVA with Bonferroni post hoc cor-
rection was used to determine significant differences between groups.
Two-way repeated-measures ANOVA was applied to determine signifi-
cant increases in dopamine transients and ipsilateral rotations after

AMPH administration. A two-tailed unpaired t test was used to de-
termine differences in RAC response between 6-OHDA–lesioned and
sham-lesioned animals.
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